Syndicated from BeyeNetwork
I spent a couple of days with thousands of SAS users this week at the SAS Global Forum 2009. There were some great sessions and, as usual with SAS, some terrific customer stories and I suspect I will write a couple of posts. This post, though, is about the theme – Leading with Confidence in an Era of Uncertainty.
The idea behind the theme, as I heard it, is that SAS delivers fact-based confidence for your decisions. Solid business analytics (of which more later) replace hunches with facts and take the guesswork out of decisions. While I understand that individual SAS users want to feel confident in their decisions, I think that the companies that use SAS want much more – they want accuracy, better decisions, optimal decisions. Sure, they want to be confident in them too but the confidence is secondary to the need for decisions that are materially, measurably, practically better. Leading with accuracy rather than with confidence.
Multiple speakers brought up the need to “understand data and information quickly” as though this was a business objective in its own right. But I don’t think it is. Businesses need to act on data quickly and accurately (there’s that word again). Understanding it is a critical step but not the payoff.
“Deliver the right information to the right person at the right time”. Well yes but why? So that the right decision gets made – that’s the purpose of it all, that’s what adds value to the business. So why not focus on making the right decision and if that means delivering information to the decision maker, great, make sure its the right information etc etc. But perhaps it means putting the right rules in the system or optimizing the constraints correctly or some combination of these things. Decision first, everything else only after.
Stephen Baker spoke about his book Numerati and one of his examples made this point, at least to me. He was talking about his own industry – media – and the challenges analytics are creating for it. In particular he used an example of ad pricing and the need to tie ad pricing to analytics about the impact of the ad. All true but companies just like the one he works for are automating ad pricing using rules (there are lots – color, size, scope etc) already. Using knowledge-worker focused analytics would let a few pricing analysts make analytically based decisions but the business cannot afford to go back to only having a couple of specialized pricing analysts who can calculate the price (that’s why they automated it, after all). Analytics should be fed into that process to alter/influence the pricing rules so that the automated decision is correct but getting this right is going to take more than just analytics, it is going to take decision management with rules and analytics.
Over and over I hear SAS customers talk about the great results they get when they put their predictive analytics to work in operational systems. They use the integration with Teradata, batch scoring, hand-coding of predictive models, loading SAS models into rules engines and more. They understand the power of predictive analytics to improve their bottom line by improving the operational decisions in their business. I am even certain that SAS understands this. Yet somehow this never seems to come up in the core SAS pitch and that worries me.
Confidence is not the issue, accuracy is. Information is not the goal, better decisions are.
Comments on this entry are closed.
Great feedback from the conference. I like your focus on the act of decision making and your points about decisions being built in to systems (as opposed to requiring individuals to make the decisions).
Sounds like an insular community, or fear of an expanded view where SAS will itself not be confident.
I agree strongly that this is about decisions – a question I wonder about is how well orgainsations actually understand where they make decisions and what kinds of decisions they make. We have seen some examples of very well described orgainsations who make extensive use of process mapping to make those descriptions. The metadata created by the process mapping exercise is a very vaulable resource for BI activities precisely because it can provide context to BI. I have a presentation on this which I gave at the IT Exec stream at the conference and I’d be happy to share it and also discuss how you and others see this.
I agree on the importance of using analytics to make decisions – I actually gave a paper on this at the conference in the IT Exec stream. I’d be happy to share this and to discuss the topic with you. Best Regards Allan Russell – SAS